
Techno-Science Research Journal 12 (1) (2024) P 12-18 
 

 
 
 

Content list available at ITC 

Techno-Science Research Journal 
Journal Homepage: http://techno-srj.itc.edu.kh/ 

 

 

12 

 

Enhancing the Accuracy and Reliability of Docker Image Vulnerability Scanning 

Technology 

Vannaroth Korn1*, Kimheng Sok1 Dona Valy2 

1 Department of Information and Communication Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. 

Box 86, Phnom Penh, Cambodia 
2 Research and Innovation Center, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, 

Cambodia  

 

Received: 17 July 2023; Accepted: 23 September 2023; Available online: June 2024 

Abstract: With the growth of usage of Docker containers in the recent year, Vulnerability scanning is essential to scanning and 

detecting known flaws and vulnerabilities in that specific Docker image. Using a custom docker image with third-party libraries in 

our code base authenticity or knowing their flaws can cause a lot of trouble in the future. In this case, vulnerability scanning tools 

such as Clair, Trivy, Anchor Grype, and Snyk are used for detecting the known vulnerability of the used Docker image and its included 

library but one Docker image can show different results depending on which tools we use due to the different scanning techniques 

and different vulnerability databases with different information (CVE, NVD, RedHat) that they use. In this research, We will be 

focusing on building an architectural framework that improves the accuracy, and reliability of the vulnerability scanning tools with 

a local vulnerability database that we built using a commonly used method such as static analysis which scans by reading package 

name and version searching, matching known suspicious pattern or signature using a binary database. Another method of scanning 

is a binary analysis which includes spotting unknown suspicious properties with a predefined algorithm. Using a confusion matrix, 

we evaluate the vulnerability scanning tool with docker images using the ground truth vulnerabilities stored in our local vulnerability 

database which is enriched with vulnerability information that is improved each time a new image is scanned.  

Keywords: Docker Image; Vulnerability scanning; Binary analysis; Static analysis; Common Vulnerability and Exposure (CVE). 

 

 

1. INTRODUCTION1 

Nowadays containerization has become a common and 

widely used technology in today's Modern IT landscape, for the 

development, deployment, or management of applications. The 

popular containerization platform Docker enables developers to 

package applications and dependencies into one image. 

However, security concerns have also emerged as a result of the 

growing popularity of Docker and containerization.  

Like any other applications, The Docker images that we use 

may contain vulnerabilities knowingly or unknowingly which 

can be exploited by malicious parties for the purpose of gaining 

unauthorized access or disrupting operations. During the process 

of creating an image, these vulnerabilities can be created or 

caused by an outdated component or unofficial third-parties 

 
* Corresponding author: Korn Vannaroth                                             

E-mail: kunvannaroth@gmail.com; Tel: +855-11 373 799 

library. In this case, scanning technologies such as Anchore 

Grype, Trivy, Snyk, and Clair are used in order to preprocess the 

used Docker image before deploying them. The issues that arise 

when using these technologies is that due to different way of 

implementation, uses of different scanning technique, different 

CVE, and vulnerability database the result response back can be 

very varied depending on these factors. So in order to reduce the 

vulnerabilities that are underlying in our application we need a 

more accurate way to determine whether an issue exists between 

or outside of these. 

Docker images can put operating system isolation and 

security features of an application or server at risk and also cause 

threats and major security issues when it is found to be insecure 

as stated by Jain et al [7]. In order to achieve Container Image 

Authenticity they need to identify the source of the image, the 



                                                                                       Korn et al./Techno-Science Research Journal 12 (1) (2024) 12-18 

13 

 

authenticity of the image, and the cryptographic proof of the 

author of the image. To answer that they conduct a study and 

evaluate different Vulnerability scanning tools such as Clair, 

Cilium, Anchor, OpenSCAP, Dagda, and Grafes and found the 

advantages and disadvantages of each tool. Since combining 

different tools with different scanning techniques and different 

advantages they concluded that “the shared information about 

security measures introduced by Docker Inc., gives the 

information of verified and certified images that can improve the 

security of Docker hub”. Even though the security measure does 

not improve overall Docker Hub Security, It does improve the 

information about vulnerabilities relating to a specific Docker 

image.  

Our contributions are 1) Building a Local Database that 

improves each time a new image is scanned. 2) Build a procedure 

to analyze and evaluate the result of each different tool; 3) 

Design and build an architecture in order to increase 

compatibility between different scanning techniques. 

In this paper, there will be 6 main points: 1). Introduction, 

2). Related works, Preliminary Research, 4). Methodology, 5). 

Result and Discussion, and finally 6). Conclusion. 

2. RELATED WORKS 

In order to produce more reliable results and improve 

accuracy, Jain et al  [7]. concluded that static security analysis of 

Docker images is being performed for security enhancement 

using various tools. These tools highlight the vulnerabilities by 

running them with different software and platforms, aiming to 

make the containers more secure. Furthermore, the creation of 

secure container images should be approached prudently to 

mitigate the potential threats from becoming a major concern for 

containers. 

Jagelid [8] noted the necessity for a static container 

vulnerability scanner, considering several perspectives. He used 

a confusion matrix to evaluate the difference between 2 

vulnerability tools by calculating its accuracy, precision, and 

recall which is useful for limiting security fatigue, by ensuring 

false alerts to developers are low. 

Ohaeche [9] determines that creating a script detecting 

vulnerabilities and halt the deployment of the image into 

production. The difference between file systems does affect how 

dependencies are extracted,  however, similar approaches can be 

used for container images and VM images stored in the MIF 

format. An advantage of container images lies in their fast 

adaption of standard formats. Therefore, one can focus on 

managing tar archives instead of supporting various different 

techniques, unique to every platform. 

Berkovich et al [4] describe that the confusion metric is an 

obvious scanner evaluation metric, marking success as relevant 

vulnerabilities detected by the scanner under evaluation as true 

positives (TP), with not-relevant vulnerabilities being false 

positives (FP). Relevant vulnerabilities not detected by the 

scanner are false negatives (FN). Precision is defined as the 

fraction of retrieved vulnerabilities that are in fact relevant, 

expressed as Precision = TP / (TP + FP). Accuracy measures the 

proportion of correctly classified cases from the total number of 

vulnerabilities calculated as Accuracy = (TN + TP) / (TN + TP 

+ FN + FP). Recall is the fraction of relevant vulnerabilities 

detected by the scanner, represented as Recall = TP / (TP + FN). 

The F-measure characterizes the combined performance of recall 

and precision, calculated as F-measure = (2 * Recall * Precision) 

/ (Recall + Precision). They utilize these three metrics to assess 

scanner quality. 

Brady et al [5] proposed an automated architectural process 

to scan and analyze images for vulnerabilities by combining 

Clair and Anchor Engine into a CI/CD pipeline. This integration 

aims to reduce the burden on developers by automating security 

analyses. They also implemented an API that scans for malware 

on public images, resulting in virus scans and dynamic analysis 

yielding results in detecting malicious behavior in Docker 

containers.. 

3. PRELIMINARY RESEARCH 

3.1. Docker Image 

Docker image is a lightweight, self-contained, and 

executable package that contains everything needed to run an 

application, including the code, runtime environment, system 

tools, libraries, and dependencies. Docker images are based on a 

layered file system, which enables efficient storage and sharing 

of common components across multiple images. Each layer 

represents a specific modification or addition to the previous 

layer that provides, resulting in a highly efficient and space-

saving image distribution. 

Docker images are created using a Dockerfile, which is a 

text file that specifies the instructions to build the image. These 

instructions include defining the base image, adding files, 

installing packages, configuring the environment, and executing 

commands to set up the application within the container. In other 

words, Custom Docker images are made up of 4 layers: layer-1 

base image, layer-2 working directory, layer-3 dependencies, 



                                                                                       Korn et al./Techno-Science Research Journal 12 (1) (2024) 12-18 

14 

 

and layer-4 accessibility exposure. 

 

Fig. 1. Docker Container Layer Architecture 

3.2. Anchore Grype 

Anchore Grype is a container vulnerability scanning and 

management tool. It is designed to assist developers and 

organizations in identifying security issues within container 

images that are widely used in modern software development 

and deployment. It works by analyzing the contents of container 

images and comparing them against a database of known 

vulnerabilities. It detects any recognized vulnerabilities or 

weaknesses in the image, including operating system packages, 

libraries, or application dependencies. By providing this 

information, it empowers developers to address risks and ensure 

the integrity of their containerized applications. 

3.3. Trivy 

Trivy is an open-source vulnerability scanner for containers 

and other software artifacts such as Docker images, container 

runtimes, and package managers. It helps developers and 

security teams identify vulnerabilities in these artifacts, allowing 

them to proactively address security risks and ensure the 

integrity of containerized applications. Trivy uses a 

comprehensive vulnerability database that includes information 

from multiple sources much similar to Anchore Grype. 

Trivy server has vulnerability database that are store in it 

github repository and Trivy client doesn't have to download 

vulnerability database. Trivy take a container registries or a .tar 

file. When analyzing a .tar file, it will then send a request for 

extracting missing layers which are third-party libraries that exist 

in this custom Docker image as shown in Fig.2. It is useful if we 

need to scan images at multiple locations and do not want to 

download the database at every location. When launching Trivy 

server for the first time, it downloads vulnerability database 

automatically fetch data. 

 

Fig. 2. Trivy’s Architecture 

3.4. Common Vulnerability and Exposure(CVE) 

Common Vulnerabilities and Exposures (CVE) is a 

standardized system for identifying and naming security 

vulnerabilities in software and hardware products. It provides a 

unique identifier for each vulnerability, allowing organizations 

and security researchers to easily reference and track them. 

Vulnerability refers to a weakness or flaw in a system that can 

be exploited by attackers to compromise the security, integrity, 

or availability of the system. Common vulnerabilities can 

include software bugs, configuration errors, design flaws, or 

inadequate security measures. CVE aims to provide a universal 

language for discussing and sharing information about 

vulnerabilities across different organizations, platforms, and 

security tools. Vulnerability in the CVE system is assigned a 

unique CVE identifier, which consists of the prefix "CVE-" 

followed by a year and a unique number (e.g., CVE-2021-1234). 

4. METHODOLOGY 

These technology there will be 2 main method to scan for 

vulnerability which are: Static analysis and Binary analysis.  

4.1. Static analysis 

This research is conducted based on an investigation of 

Docker image scanning technology to improve the accuracy of 

the vulnerability scanning tool and multiple vulnerability 

databases. The first methods that are used in Docker image 

vulnerability scanning tools involve static analysis. 

Static analysis in the context of Docker image vulnerability 

scanning entails analyzing the contents of a Docker image 

without actually running the image. This analysis is typically 

performed on the layers of the Docker image, which are the 



                                                                                       Korn et al./Techno-Science Research Journal 12 (1) (2024) 12-18 

15 

 

individual components that make up the image. 

 

Fig. 3. Docker Container Layer Architecture 

Package manager scanning is commonly used in CVE 

Docker image scanning tools as a form of static analysis to 

identify known vulnerabilities in software components installed 

within Docker images. These tools typically leverage package 

manager metadata, configuration files, and information on 

installed packages to match against a known vulnerability 

database or known vulnerable package version.  

Signature-based detection: Similar to pattern matching, 

signature-based detection involves comparing the contents of the 

Docker image layers against a database of known signatures 

associated with vulnerabilities. Signatures are unique identifiers 

or characteristics that are associated with specific vulnerabilities, 

and static analysis tools can use these signatures to identify 

potential vulnerabilities in Docker images. 

4.2. Binary analysis 

Binary analysis is the second method its databases in Docker 

image vulnerability typically consist of a collection of known 

binary patterns, signatures, or fingerprints that are associated 

with known and existing vulnerabilities. These databases are 

used by vulnerability scanning tools to scan Docker images for 

potential vulnerabilities by matching the binary patterns or 

signatures in the images against those in the database. 

Dependency analysis: This method involves examining the 

dependencies of binary artifacts, such as libraries or other 

software components, to identify any known vulnerabilities 

associated with those dependencies. This involve checking 

against known vulnerability databases, analyzing version 

numbers, and comparing against lists of vulnerable dependencies 

as shown in Fig.3. Dependency analysis helps identify 

vulnerabilities that may arise from using suspicious code  pattern 

or vulnerable third-party libraries or software components.

 

Fig. 3. Extracting Dependency Workflow 

4.3. Proposed Architecture 

In this architecture, User first needs to input a docker image 

through a UI, these will go through different flows depending on 

the Input of the user to scan for vulnerabilities then the input 

image will go through the 5 main modules. 

 

 Fig. 4. Proposed Architecture 

4.3.1. Image Verification 

First of all, when inputting a docker image to scan for their 

vulnerabilities but in the case of Image verification user can 

either load an official base image from the docker hub or a 

custom docker image which they build using a combination of 

official docker images and other libraries with Dockerfile. Not 

only that but users can choose not to access the cloud and return 

the existing vulnerability in the local Database. 

In the case of a user loading a custom image, we need to use 

a Dependency analysis to detect the third-party library they use 

and package manager scanning and signature base analysis for 

the official docker image they use in this custom image. While 

as if they were to load an official docker image as an Input we 

do not need to run a Dependency analysis. 

4.3.2. Scanning  Processes 

After obtaining  the image name and version or its version 

if the loaded image was a custom docker image, We will get the 

vulnerabilities with our API from NVD, Redhat, Anchore Grype, 

and Trivy. The vulnerability information that we got from Nvd 

and Redhat is a lot and we do not require all of it, So we need to 

unorganized and clean the API for our usability. 

In Anchor Grype and Trivy processes, We can access its 

vulnerabilities database by installing them into our machine but 

xsince both Anchore Grype and Trivy can only be run through a 

command prompt we create an API that accesses the command 



                                                                                       Korn et al./Techno-Science Research Journal 12 (1) (2024) 12-18 

16 

 

prompt to request the vulnerability information and return them 

according to our usage. We also need to adjust and customize 

both the parameters and the results, Since we can you Grype to 

scan for both custom Docker images and official Docker images. 

Package manager scanning process is one of the analysis 

method that we implement into our architecture, When it comes 

to custom images, The Custom Docker image is composed of an 

official image and included with the necessary dependencies to 

run that application. Usually, these custom images are composed 

into a .tar file and so first we extract the Third Layer from the 

image which contains all of the dependencies. After having the 

dependency’s name. We can further it by extracting the vendor, 

cache, and configuration from these depending. When we finally 

have all of this information. We stored them in a temporary 

thread awaiting information from Cloud Vulnerability Database 

to do Pattern Matching. But when the input from the user is an 

official Docker image then this process will not run, Since there 

are no dependencies installed in the official one.  

Signature-based analysis process is another analysis method 

that we implement and it is by far the simplest out of the 3. The 

difference between static analysis of Package manager scanning 

and Signature-based detection is that the Package work on the 

Third-Layer of the Docker image while Signature-based work on 

the First-Layer which is the Base Image layer. When scanning 

for vulnerabilities using this method, It read the name of the used 

Docker image and search for existing vulnerability relating to 

this image in the Cloud Database (NVD, CVE) if the input is 

parsed with the image version then it will also search for that 

specific version otherwise it will by default search for 

vulnerabilities of the latest version. 

Lastly Dependencies analysis process , It works similarly to 

the Package manager scanning process. The main difference is 

that dependencies analysis installs these libraries and scans for a 

collection of binary patterns and signatures associated with 

known vulnerabilities. We know that not all custom libraries 

with existing vulnerabilities are stored in the database but these 

libraries may use existing attack patterns, So in such cases, we 

can prevent these malicious libraries by searching for an existing 

vulnerability pattern that are used for attacking in the past.  

The API call different type of process depending on the 

input given by the user. This process is unique from one another 

because it utilizes different analysis methods. In this case, we can 

scale our architecture by adding more processes that use other 

methods in the future for more accuracy. 

4.3.3. Cloud Database 

All the vulnerability information utilized in the analysis 

methods above originates from a Cloud database. While NVD 

and Red Hat have their own APIs for inquiring about 

vulnerability information, including CVE, CPE, and vendor 

details. 

Anchore Grype and Trivy, on the other hand, lack APIs. 

These tools access the vulnerabilities database at intervals 

whenever we request information through a command prompt. 

However, they also rely on the vulnerability database to retrieve 

information. 

Although using the same vulnerability database might lead 

to redundant data, that isn't always the case. One potential reason 

for redundancy could arise from differences in how vulnerability 

scanning tools prioritize the severity of vulnerabilities. Another 

factor influencing differing results could be the frequency of 

updates to the vulnerability database. 

 
Fig. 5. Building Ground Truth WorkFlow 

4.3.4. Evaluation 

In this phase, we will classify all of the vulnerabilities found 

by each into True Positive, True Negative, False Positive, and 

False Negative, including the vulnerabilities that are found using 

the modified analysis method above, and evaluate our work 

using a Confusion matrix. As we conclude the our Local 

Database is the Ground truth, Thus Vulnerabilities found that 

exist in our Ground truth are marked as True Positive(TP), 

Vulnerabilities that are found but does not exist in our Ground 

truth are False Negative(FN), exist in ground truth and not found 

are classify as False Positive(FP) and finally existing in ground 

truth does not exist and are not found as True Negative(TN). 

4.3.5. Local Database 

Finally, After processing all of the vulnerabilities using our 

API that accesses the Cloud database and command prompt, we 

store them in our local database as a ground truth of the 

combination of all of the information from different databases 

and tools for evaluation purposes using different API and also 

reducing time complexity when the next request contains a third-

parties library or base images that already exist in our local 

database. 

5. RESULTS AND DISCUSSION 

In the evaluation phase, We have to collect a docker image 

with existing vulnerabilities to create a ground truth and then we 

can analyze the quality of the vulnerability scanning tool with 

the result returned by each tool using a confusion matrix to 

classify the vulnerability found and finding their precision, 

recall, and f-measure. 
As shown in Fig.6, We have tested 10 Docker images some 

of which are custom Docker images such as Php, Node, and 

OpenJDK. This means they contain a third-party library as you 

can see the spike difference between these 3 Docker images 



                                                                                       Korn et al./Techno-Science Research Journal 12 (1) (2024) 12-18 

17 

 

compared to the other 7. In the below figure, you can clearly tell 

the difference in results between technology that is because in 

the previous discussion, we already established that some 

technology specializes in some Docker image, and also the same 

vulnerability can exist on multiple vendors. 

 

Fig. 6. Total Vulnerabilies of Docker Image with each Scanning Tools 

 

Table 1. Evaluation of found vulnerability in Docker Image  

In this last phase, In order to accurately identify the quality 

of the tools were are using we need to classify the found 

vulnerabilities to TP, TN, FN and FP. Since in our case, there is 

no prediction value and our primary uses it for classifying 

vulnerability to calculate the precision and performance of a tool 

and compared it to another tools. We can calculate the recall and 

F-measure using confusion matrix in order to compare it against 

our work. In this case, Grype and Trivy are calculated to compare 

against our work. The goal of this evaluation is that when adding 

a new technology , new analysis methods and its scanning 

technique into our architecture, we can use this evaluation 

method to compare them since the result of the newly added 

technology is still unknown in our local database. 

As mention in [4] and [8], we use confusion matrix  to 

evaluate the performance of the vulnerability scanning tool and 

compare it result with the relevance and irrelevance vulnerability 

between the detected and the actual. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (Eq.1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (Eq.2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (Eq.3) 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
  (Eq.4) 

In Fig.6 after we got the information on existing 

vulnerabilities on docker image, we classify these vulnerabilities 

into TP, TN, FN, FP using our evaluation process and the result 

is as shown above Table 1. The result in Table 2 and Table 3 are 

calculated based on (Eq.1), (Eq.2), (Eq.3) and (Eq.4) using the 

data listed in Table 1. 

 

 

 

Table 2. Confusion Matrix of Grype’s Result  

 Precision Accuracy Recall F-measure 

Mysql 0.7714 0.5094 0.6 0.675 

Php 0.6719 0.4806 0.6279 0.6492 

Redis 0.8 0.4670 0.5287 0.6366 

 
Table 3. Confusion Matrix of Trivy’s Result 

 Precision Accuracy Recall F-measure 

Mysql 0.5925 0.3742 0.5039 0.5446 

Php 0.6508 0.5054 0.6934 0.6714 

Redis 0.6480 0.5898 0.8678 0.7420 

 

Table 1 shows that there is a  very vast different be between 

the result of Php image scanned by Grype and Trivy, this is cause 

by of the third-party library that are installed within them. 

Vulnerabilities in alpine image is fewer compared to other due 

to it being an base image and not containing any dependencies 

installation. Table 2 and Table 3 shows that the accuracy 

  Alpine 

3.13.5 

Mysql 

5.7.22 

Redis 

6.2 

Node 

16 

CentOS 

8.4 

Php 

8.1 

Maven 

3.8 

OpenJDK 

17 

Composer 

2.1.11 

Phpmy 

admin 

5.21 

 True Positive 27 229 92 719 184 211 93 26 194 163 

Grype True Negative 0 0 0 0 0 0 0 0 0 0 

 False Positive 8 189 23 754 176 103 121 72 3 23 

 False Negative 18 132 82 35 191 125 28 46 31 130 

 True Positive 37 192 151 0 416 233 0 0 222 270 

Trivy True Negative 0 0 0 0 0 0 0 0 0 0 

 False Positive 18 132 82 35 191 125 28 46 31 130 

 False Negative 8 189 23 754 176 103 121 72 3 23 



                                                                                       Korn et al./Techno-Science Research Journal 12 (1) (2024) 12-18 

18 

 

between different image using different tools can differ resulting 

in inaccurate result or missing vulnerability. 

As the result shows above, We can see that adding more 

analysis methods to our architecture can increase the number of 

vulnerabilities found in a docker image. Even using a redundant 

vulnerabilities database we can still be able to catch a few more 

vulnerabilities even if they are not notable or high severity and 

Thus allow users to be able to decide which docker image or 

version they want to use. 

6. CONCLUSIONS   

 

In conclusion, we can improve the vulnerability scanning 

tools greatly by using more sources of vulnerability databases 

including the database used by other tools to confirm if the 

vulnerability exists, a bigger database, implementing more 

analysis methods, and utilizing this bigger database to improve 

the result, designing an architecture that supports all of these 

tools together, writing an algorithm to optimize the process of 

accessing multiple vulnerability databases to compensate for a 

bigger source, Building a Local Database that are enriched with 

vulnerabilities and is improved constantly every time a new 

Docker image is scanned, Implementing a Confusion matrix to 

evaluate and compare the result to our when a new technology is 

added in the architecture, Designing and Building an architecture 

to add different scanning technique between different tools in 

order to improved result. 

ACKNOWLEDGMENTS 

This research was conducted in the Information Security and 

Application Design lab of the Department of Information and 

Communication Engineering at the Institute of Technology of 

Cambodia. 

REFERENCES 

[1]  Abhishek, M. K., & Rao, D. R. (2021, July). Framework to 

secure docker containers. In 2021 Fifth World Conference 

on Smart Trends in Systems Security and Sustainability 

(WorldS4) (pp. 152-156). IEEE. 

[2] Al-Asli, M., & Ghaleb, T. A. (2019, April). Review of 

signature-based techniques in antivirus products. In 2019 

International Conference on Computer and Information 

Sciences (ICCIS) (pp. 1-6). IEEE. 

[3]  Alyas, T., Ali, S., Khan, H. U., Samad, A., Alissa, K., & 

Saleem, M. A. (2022). Container Performance and 

Vulnerability Management for Container Security Using 

Docker Engine. Security and Communication Networks, 

2022. 

[4] Berkovich, S., Kam, J., & Wurster, G. (2020, August). 

UBCIS: Ultimate benchmark for container image scanning. 

In Proceedings of the 13th USENIX Conference on Cyber 

Security Experimentation and Test (pp. 10-10). 

[5]  Brady, K., Moon, S., Nguyen, T., & Coffman, J. (2020, 

January). Docker container security in cloud computing. In 

2020 10th Annual Computing and Communication 

Workshop and Conference (CCWC) (pp. 0975-0980). 

IEEE. 

[6]  Cox, J., Bouwers, E., Van Eekelen, M., & Visser, J. (2015, 

May). Measuring dependency freshness in software 

systems. In 2015 IEEE/ACM 37th IEEE International 

Conference on Software Engineering (Vol. 2, pp. 109-118). 

IEEE.  

[7] Jain, V., Singh, B., Khenwar, M., & Sharma, M. (2021, 

April). Static vulnerability analysis of docker images. In 

IOP Conference Series: Materials Science and Engineering 

(Vol. 1131, No. 1, p. 012018). IOP Publishing. 

 

[8] Jagel id, M. (2020). Container Vulnerability Scanners: An 

Analysis.  

[9]  Kwon, S., Harrison, K., Kweon, S. J., & Williams, D. S. B. 

(2020). Divds: Docker image vulnerability diagnostic 

system. IEEE Access, 8, 42666-42673. 

[9] Ohaeche, J. U. (2022). Docker Container Image-

Vulnerability Scanning 

[10] T. Combe, A. Martin, and R. Di Pietro, "To Docker or Not 

to Docker: A Security Perspective," in IEEE Cloud 

Computing, vol. 3, no. 5, pp. 54-62, Sept.-Oct. 2016, doi: 

10.1109/MCC.2016.100. 

[11]  Wenhao, J., & Zheng, L. (2020, September). Vulnerability 

analysis and security research of docker container. In 2020 

IEEE 3rd International Conference on Information Systems 

and Computer Aided Education (ICISCAE) (pp. 354-357). 

IEEE. 

[12] Xu, J., Wu, Y., Lu, Z., & Wang, T. (2019, July). Dockerfile 

tf smell detection based on dynamic and static analysis 

methods. In 2019 ieee 43rd annual computer software and 

applications conference (compsac) (Vol. 1, pp. 185-190). 

 


